Tuesday, January 14, 2020

New Paper: Insights into Human-wildlife Interactions in Cities from Bird Sightings Recorded Online

In the past we have explored how social media can be used to delineate earthquakes, locate wildfires or be used to understand urban morphology. However, recently we have also started to explore how social media and crowdsourced data can be utilized to to study socio-environmental systems. Keeping with this them, Bianca Lopez, Emily Minor, and myself have recently had a paper published in Landscape and Urban Planning entitled "Insights into Human-wildlife Interactions in Cities from Bird Sightings Recorded Online."  

In the paper we explore where do people observe birds, using the city of Chicago as our case study. By utilizing urban bird observations collected from eBird, iNaturalist, and Flickr we find that most bird observations occurred in open space zoned for recreational use. Further analysis revealed that the number of bird observations varied with income, population size, and proximity to Lake Michigan. If you want to find out more, below is the abstract to the paper, along with some figures of the results and at the bottom of the post, the full reference and a link to the paper. 

Interactions with nature can improve the wellbeing of urban residents and increase their interest in biodiversity. Many places within cities offer opportunities for people to interact with wildlife, including open space and residential yards and gardens, but little is known about which places within a city people use to observe wildlife. In this study, we used publicly available spatial data on people’s observations of birds from three online platforms—eBird, iNaturalist, and Flickr—to determine where people observe birds within the city of Chicago, Illinois (USA). Specifically, we investigated whether land use or neighborhood demographics explained where people observe birds. We expected that more observations would occur in open spaces, and especially conservation areas, than land uses where people tend to spend more time, but biodiversity is often lower (e.g., residential land). We also expected that more populated neighborhoods and those with higher median age and income of residents would have more bird observations recorded online. We found that bird observations occurred more often in open spaces than in residential areas, with high proportions of observations in recreation areas. In addition, a linear regression model showed that neighborhoods with higher median incomes, those with larger populations, and those located closer to Lake Michigan had more bird observations recorded online. These results have implications for conservation and environmental education efforts in Chicago and demonstrate the potential for social media and citizen science data to provide insight into urban human-wildlife interactions.
Keywords: Urban biodiversity, human-nature interaction, open space, residential, spatial analysis, birdwatching.

Map of bird observations from the three web platforms (Flickr, eBird, and iNaturalist) across the city of Chicago, in relation to mean median income of community areas (left panel) and open space, residential land use, highways, and waterways (right panel).

Proportions of observations recorded in different land uses on the three different online platforms (n = 7944 eBird; n = 474 iNaturalist; n = 561 Flickr). There was a significant difference between the three distributions (simulated p-value less than 0.001), including in the proportions of observations in conservation, recreation, and residential land uses.

Full Reference:
Lopez, B.E., Minor, E.S. and Crooks, A.T. (2020), Insights into Human-wildlife Interactions in Cities from Bird Sightings Recorded Online, Landscape and Urban Planning. 196: 103742. (pdf)

Thursday, January 02, 2020

Models from Teaching CSS Fall 2019

Avid readers of this blog (if there are any) may be familiar with my routine of combing end of semester projects into a short movie and blogging about it. Well its that time again. Last semester I gave a class entitled Introduction to Computational Social Science and instead of setting a final exam, I ask the students to carryout an end of semester research project. The aim of this exercise is to cement what the students have (hopefully) learnt during the semester. I.e.: 
  • to understand the motivation for the use of computational models in social science theory and research; 
  • to learn about the variety of CSS research programs across the social science disciplines; 
  • to understand the distinct contribution that CSS can make by providing specific insights about society, social phenomena at multiple scales, and the nature of social complexity.
Below you can see some of the outputs from these projects this last fall. These models ranged in type from agent-based models, microsimulation to system dynamics models applied to a variety of topics from how machine learning can be utilized within agent-based models to applications such as the courts, common pool resources, public goods, economic growth, supply chains, heath care issues (e.g. patient diagnosis, fungi infections within hospitals), team performance, labor markets, voting, and several other topics along the way.