While in the past we have written about how we can use agent-based models to capture basic patterns of life, and even developed a simulations, but until now we have never really demonstrated how we go about this. However, at the SIGSPATIAL 2024 conference we (Hossein Amiri, Will Kohn, Shiyang Ruan, Joon-Seok Kim, Hamdi Kavak, Dieter Pfoser, Carola Wenk, Andreas Zufle and myslf) have a demonstration paper entitled "The Pattern of Life Human Mobility Simulation." in which we show:
- How to run the Patterns of Life Simulation with the graphical user interface (GUI) to visually explore the mobility patterns of a region.
- How to run the Patterns of Life Simulation headless (without GUI) for large-scale data generation.
- How to adapt the simulation to any region in the world using OpenStreetMap data,
- Showcase how recent scalability improvements allow us to simulate hundreds of thousands of agents.
If this sounds of interest, below we show the GUI to the model, along with the steps to generate a trajectory dataset or a new map for the simulation. At the bottom of the post you can actually see the papers full reference and a link to download it. While at https://github.com/onspatial/generate-mobility-dataset you can find the source code for the enhanced simulation and data-processing tools for you to experiment with.
Abstract:
We demonstrate the Patterns of Life Simulation to create realistic simulations of human mobility in a city. This simulation has recently been used to generate massive amounts of trajectory and check-in data. Our demonstration focuses on using the simulation twofold: (1) using the graphical user interface (GUI), and (2) running the simulation headless by disabling the GUI for faster data generation. We further demonstrate how the Patterns of Life simulation can be used to simulate any region on Earth by using publicly available data from OpenStreetMap. Finally, we also demonstrate recent improvements to the scalability of the simulation allows simulating up to 100,000 individual agents for years of simulation time. During our demonstration, as well as offline using our guides on GitHub, participants will learn: (1) The theories of human behavior driving the Patters of Life simulation, (2) how to simulate to generate massive amounts of synthetic yet realistic trajectory data, (3) running the simulation for a region of interest chosen by participants using OSM data, (4) learn the scalability of the simulation and understand the properties of generated data, and (5) manage thousands of parallel simulation instances running concurrently.
Keywords: Patterns of Life, Simulation, Trajectory, Dataset, Customization
Steps to generate the one trajectory dataset. |
Full referece:
Amiri, H., Kohn, W., Ruan, S., Kim, J-S., Kavak, H., Crooks, A.T., Pfoser, D., Wenk, C. and Zufle, A. (2024) The Pattern of Life Human Mobility Simulation (Demo Paper), ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Atlanta, GA. (pdf)
No comments:
Post a Comment