Friday, October 13, 2017

AAG2018: Innovations in Urban Analytics

Call for Papers, AAG2018: Innovations in Urban Analytics

We welcome paper submissions for our session at the Association of American Geographers Annual Meeting on 10-14 April, 2018, in New Orleans.

Session Description

New forms of data about people and cities, often termed ‘Big’, are fostering research that is disrupting many traditional fields. This is true in geography, and especially in those more technical branches of the discipline such as computational geography / geocomputation, spatial analytics and statistics, geographical data science, etc. These new forms of micro-level data have lead to new methodological approaches in order to better understand how urban systems behave. Increasingly, these approaches and data are being used to ask questions about how cities can be made more sustainable and efficient in the future.

This session will bring together the latest research in urban analytics. We are particularly interested in papers that engage with the following domains:
  • Agent-based modelling (ABM) and individual-based modelling;
  • Machine learning for urban analytics;
  • Innovations in consumer data analytics for understanding urban systems;
  • Real-time model calibration and data assimilation;
  • Spatio-temporal data analysis;
  • New data, case studies, demonstrators, and tools for the study of urban systems;
  • Complex systems analysis;
  • Geographic data mining and visualization;
  • Frequentist and Bayesian approaches to modelling cities.

Please e-mail the abstract and key words with your expression of intent to Nick Malleson (n.s.malleson@leeds.ac.uk) by 18 October, 2017 (one week before the AAG abstract deadline). Please make sure that your abstract conforms to the AAG guidelines in relation to title, word limit and key words and as specified at: http://annualmeeting.aag.org/submit_an_abstract. An abstract should be no more than 250 words that describe the presentation’s purpose, methods, and conclusions.

For those interested specifically in the interface between research and policy, they might consider submitting their paper to the session “Computation for Public Engagement in Complex Problems” (http://www.gisagents.org/2017/10/call-for-papers-computation-for-public.html).

Key Dates
  • 18 October, 2017: Abstract submission deadline. E-mail Nick Malleson by this date if you are interested in being in this session. Please submit an abstract and key words with your expression of intent.
  • 23 October, 2017: Session finalization and author notification.
  • 25 October, 2017: Final abstract submission to AAG, via the link above. All participants must register individually via this site. Upon registration you will be given a participant number (PIN). Send the PIN and a copy of your final abstract to Nick Malleson (n.s.malleson@leeds.ac.uk). Neither the organizers nor the AAG will edit the abstracts.
  • 8 November, 2017: AAG session organization deadline. Sessions submitted to AAG for approval.
  • 9-14 April, 2018: AAG Annual Meeting.

Session Organizers

Saturday, October 07, 2017

Generation of Realistic Mega-City Populations and Social Networks for ABM


At the upcoming 2017 Annual conference of the Computational Social Science Society of the Americas, Annetta Burger, Talha Oz, William Kennedy and myself have a paper entitled: "Generation of Realistic Mega-City Populations and Social Networks for Agent-Based Modeling". 

In the paper we discuss some of our current work of generating synthetic human populations with realistic social networks with respect to the New York mega-city and surrounding region. Below you can read the abstract of the paper and see our workflow along with some initial results. The full reference to the paper and a link to the pdf can be found at the bottom of the post.


Abstract:
Agent-based modeling is a means for researchers to conduct large-scale computer experiments on synthetic human populations and study their behaviors under different conditions. These models have been applied to questions regarding disease spread in epidemiology, terrorist and criminal activity in sociology, and traffic and commuting patterns in urban studies. However, developing realistic control populations remains a key challenge for the research and experimentation. Modelers must balance the need for representative, heterogeneous populations with the computational costs of developing large population sets. Increasingly these models also need to include the social network relationships within populations that influence social interactions and behavioral patterns. To address this we used a mixed method of iterative proportional fitting and network generation to build a synthesized subset population of the New York megacity and region. Our approach demonstrates how a robust population and social network relevant to specific human behavior can be synthesized for agent-based models. 

Keywords: Agent-based Models, Geographical Systems, Population Synthesis, Social Networks, Megacity.





Full Reference: 
Burger, A., Oz, T., Crooks, A.T. and Kennedy, W.G. (2017). Generation of Realistic Mega-City Populations and Social Networks for Agent-Based Modeling, The Computational Social Science Society of Americas Conference, Santa Fe, NM. (pdf)


Monday, October 02, 2017

Call for Papers – Computation for Public Engagement in Complex Problems

Call for Papers – Computation for Public Engagement in Complex Problems: From Big Data, to Modeling, to Action 



We welcome paper submissions for our session(s) at the Association of American Geographers Annual Meeting on 9-14 April, 2018, in New Orleans.  

Session Description: In line with one of the major themes of this conference, we explore the opportunities and challenges that geo-computational tools offer to support public engagement, deliberation and decision-making to address complex problems that link human, socioeconomic and biophysical systems at a variety of different spatial and temporal scales (e.g., climate change, resource depletion, and poverty). Modelers and data scientists have shown increasing interest in the intersection between science and policy, acknowledging that, for all the computational advances achieved to support policy and decision-making, these approaches remain frustratingly foreign to the public they are meant to serve. On one hand, there is a persistent gap in the public’s understanding of and reasoning about complex systems, resulting in unintended and undesirable consequences. On the other hand, there is significant public skepticism about the knowledge generated by the modeling community and its ability to inform policy and decision-making.

We invite theoretical, methodological, and empirical papers that explore advances in geo-computational approaches, including part or all the process to address complex problems: from data collection and analysis, to the development and use of models, to supporting action with data analysis and modeling. We are interested in any work that contributes towards the overall goal of supporting public engagement and action around complex problems, including—but not limited to—the following topics:
  • epistemological perspectives; 
  • extracting behavioral rules from novel and established data sets; 
  • innovative applications of complex systems techniques, and 
  • addressing the challenge of complex systems model calibration and validation. 

Please e-mail the abstract and key words with your expression of intent to Moira Zellner (mzellner@uic.edu) by October 18, 2017 (one week before the AAG abstract deadline). Please make sure that your abstract conforms to the AAG guidelines in relation to title, word limit and key words and as specified at: http://annualmeeting.aag.org/submit_an_abstract. An abstract should be no more than 250 words that describe the presentation’s purpose, methods, and conclusions.

 Timeline summary: 
  • October 18, 2017: Abstract submission deadline. E-mail Moira Zellner (mzellner@uic.edu) by this date if you are interested in being in this session. Please submit an abstract and key words with your expression of intent. 
  • October 23, 2017: Session finalization and author notification. 
  • October 25, 2017: Final abstract submission to AAG, via the link above. All participants must register individually via this site. Upon registration you will be given a participant number (PIN). Send the PIN and a copy of your final abstract to Moira Zellner. Neither the organizers nor the AAG will edit the abstracts. 
  • November 8, 2017: AAG session organization deadline. Sessions submitted to AAG for approval. 
  • April 9-14, 2018: AAG Annual Meeting.  

Organizers:

Monday, September 18, 2017

Agent-Based Modeling Chapter

In the recently published "Comprehensive Geographic Information Systems" edited by Bo Huang, Alison Heppenstall, Nick Malleson and myself have a chapter entitled "Agent-based Modelling"1. Within the chapter, we provide a overview of agent-based modeling (ABM) especially for the geographical sciences. This includes a section on how ABM emerged i.e. "The Rise of the (Automated) Machines", along with a discussion on what constitutes an agent. This is followed with steps to building an agent-based model, including: 1) the preparation and design; 2) model implementation 3) and how one goes about evaluating a model (i.e. verification, calibration and validation and how these are particularity challenging with respect to spatial agent-based models). We then discuss how we can integrate space and GIS into agent-based models and review a number of open-source ABM toolkits (e.g. GAMA, MASON, NetLogo) before concluding with challenges and opportunities that we see ahead of us, such as adding more complex behaviors to agent-based models, and how "big data" offers new avenues for multiscale calibration and validation of agent-based models.  If you are still reading this, below you can read the abstract of the paper and find the full reference to the chapter.

Abstract:
Agent-based modeling (ABM) is a technique that allows us to explore how the interactions of heterogeneous individuals impact on the wider behavior of social/spatial systems. In this article, we introduce ABM and its utility for studying geographical systems. We discuss how agent-based models have evolved over the last 20 years and situate the discipline within the broader arena of geographical modeling. The main properties of ABM are introduced and we discuss how models are capable of capturing and incorporating human behavior. We then discuss the steps taken in building an agent-based model and the issues of verification and validation of such models. As the focus of the article is on ABM of geographical systems, we then discuss the need for integrating geographical information into models and techniques and toolkits that allow for such integration. Once the core concepts and techniques of creating agent-based models have been introduced, we then discuss a wide range of applications of agent-based models for exploring various aspects of geographical systems. We conclude the article by outlining challenges and opportunities of ABM in understanding geographical systems and human behavior.

Keywords: Agent-based modeling; Calibration; Complexity; Geographical information science; Modeling and simulation; Validation; Verification.





Full Reference
Crooks, A.T., Heppenstall, A. and Malleson, N. (2018), Agent-based Modelling, in Huang, B. (ed), Comprehensive Geographic Information Systems, Elsevier, Oxford, England. Volume 1, pp. 218-243 DOI: https://doi.org/10.1016/B978-0-12-409548-9.09704-9. (pdf)

1. [Readers of this blog might of expected the chapter would be about Agent-based Modeling, but its still worth a read!]

Thursday, August 17, 2017

Big Data, Agents and the City


In the recently published book "Big Data for Regional Science" edited by Laurie Schintler and  Zhenhua Chen, Nick Malleson, Sarah Wise, and Alison Heppenstall and myself have a chapter entitled: Big Data, Agents and the City. In the chapter we discuss how big data can be used with respect to building more powerful agent-based models. Specifically how data from say social media could be used to inform agents behaviors and their dynamics; along with helping with the calibration and validation of such models with a emphasis on urban systems. 

Below you can read the abstract of the chapter, see some of the figures we used to support our discussion, along with the full reference and a pdf proof of the chapter. As always any thoughts or comments are welcome.


Abstract:
Big Data (BD) offers researchers the scope to simulate population behavior through vastly more powerful Agent Based Models (ABMs), presenting exciting opportunities in the design and appraisal of policies and plans. Agent-based simulations capture system richness by representing micro-level agent choices and their dynamic interactions. They aid analysis of the processes which drive emergent population level phenomena, their change in the future, and their response to interventions. The potential of ABMs has led to a major increase in applications, yet models are limited in that the individual-level data required for robust, reliable calibration are often only available in aggregate form. New (‘big’) sources of data offer a wealth of information about the behavior (e.g. movements, actions, decisions) of individuals. By building ABMs with BD, it is possible to simulate society across many application areas, providing insight into the behavior, interactions, and wider social processes that drive urban systems. This chapter will discuss, in context of urban simulation, how BD can unlock the potential of ABMs, and how ABMs can leverage real value from BD.  In particular, we will focus on how BD can improve an agent’s abstract behavioral representation and suggest how combining these approaches can both reveal new insights into urban simulation, and also address some of the most pressing issues in agent-based modeling; particularly those of calibration and validation.

Keywords: Agent-based models, Big Data, Emergence, Cities.

The growth in Agent-based modeling -from search results of Web of Science and Google Scholar.

Hotspots of activity of Tweeter Users: Tweet locations and associated densities for a selection of prolific users.

Full Reference:
Crooks, A.T., Malleson, N., Wise, S. and Heppenstall, A. (2018), Big Data, Agents and the City, in Schintler, L.A. and Chen, Z. (eds.), Big Data for Urban and Regional Science, Routledge, New York, NY, pp. 204-213. (pdf)